Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids
نویسنده
چکیده
We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of Kähler quantization suitable for this setting. We proceed by defining a Marsden-Weinstein quotient for our setting and prove a “quantization commutes with reduction” theorem. We explain how our geometric quantization procedure relates to a possible orbit method for Lie groupoids. Our theory encompasses the geometric quantization of symplectic manifolds, Hamiltonian Lie algebra actions, actions of bundles of Lie groups, and foliations, as well as some general constructions from differential geometry.
منابع مشابه
Lie Groupoids and Lie algebroids in physics and noncommutative geometry
Groupoids generalize groups, spaces, group actions, and equivalence relations. This last aspect dominates in noncommutative geometry, where groupoids provide the basic tool to desingularize pathological quotient spaces. In physics, however, the main role of groupoids is to provide a unified description of internal and external symmetries. What is shared by noncommutative geometry and physics is...
متن کاملA Survey of Lagrangian Mechanics and Control on Lie Algebroids and Groupoids
In this survey, we present a geometric description of Lagrangian and Hamiltonian Mechanics on Lie algebroids. The flexibility of the Lie algebroid formalism allows us to analyze systems subject to nonholonomic constraints, mechanical control systems, Discrete Mechanics and extensions to Classical Field Theory within a single framework. Various examples along the discussion illustrate the soundn...
متن کاملDifferential Operators and Actions of Lie Algebroids
We demonstrate that the notions of derivative representation of a Lie algebra on a vector bundle, of semi-linear representation of a Lie group on a vector bundle, and related concepts, may be understood in terms of representations of Lie algebroids and Lie groupoids, and we indicate how these notions extend to derivative representations of Lie algebroids and semi-linear representations of Lie g...
متن کاملLie Algebroids and Lie Pseudoalgebras
Lie algebroids and Lie pseudoalgebras arise from a wide variety of constructions in differential geometry; they have been introduced repeatedly into the geometry, physics and algebra literatures since the 1950s, under some 14 different terminologies. The first main part (Sections 2-5) of this survey describes the four principal classes of examples, emphazising that each arises by means of a gen...
متن کاملGraded Bundles in the Category of Lie Groupoids
We define and make initial study of Lie groupoids equipped with a compatible homogeneity (or graded bundle) structure, such objects we will refer to as weighted Lie groupoids. One can think of weighted Lie groupoids as graded manifolds in the category of Lie groupoids. This is a very rich geometrical theory with numerous natural examples. Note that VB-groupoids, extensively studied in the recen...
متن کامل